Year: 2002 Language: english Author: Kuznetsov N., Maz'ya V., Vainberg B. Genre: Handbook Publisher: Cambridge University Press Edition: 1st ISBN: 0521808537 Format: PDF Quality: Scanned pages Pages count: 533 Description: This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum You cannot attach files in this forum You cannot download files in this forum

1969^{®}22-Aug-2020 09:25## Linear water waves - a mathematical approach

Language: english

Author: Kuznetsov N., Maz'ya V., Vainberg B.

Genre: Handbook

Publisher: Cambridge University Press

Edition: 1st

ISBN: 0521808537

Format: PDF

Quality: Scanned pages

Pages count: 533

Description: This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

## Contents

## Screenshots