chayan_09 ® 15-Nov-2018 09:55

Marine Hydrodynamics


Year: 2017
Language: english
Author: J. N. Newman
Genre: Textbook
Format: PDF
Quality: eBook
Pages count: 450
Description: The field of marine hydrodynamics has broadened greatly over the past
40 years, with applications to a wide variety of vessels and structures.
These include systems for converting energy from the wind, waves, and
currents; yachts, high-speed vessels, aquaculture facilities, and various
types of submerged vessels; and traditional applications to ships and offshore
platforms. The support for education and research has grown accordingly;
it is gratifying that the term “marine hydrodynamics” has become
ubiquitous for university departments, research laboratories, conferences,
and publications.
The basic topics of the field are unchanged, corresponding broadly to
the chapters of this text. Numerical methods that extend the applications
of the theory have been developed. Practicing engineers and naval architects
are now making routine use of well-established programs to optimize
their designs and predict performance. These programs include Navier–
Stokes solvers, which analyze viscous effects including turbulence, and
“panel” programs based on boundary-integral equations to solve potentialflow
problems including lifting and wave effects. This evolution has been
accelerated by the universal access to computers of increasing capacity
and convenience. Nevertheless, it is essential to understand the underlying
principles covered in this text, and to compare the results of computations
with simpler approximations to be confident of their validity.
I am grateful to the MIT Press for suggesting this special edition and
for making it available economically, both as a paperback and as an open
access e-book. I am especially grateful to Professor John Grue for the foreword,
which reflects his long experience using this text.

Contents

Contents
Foreword xi
Preface to the 40th Anniversary Edition xvii
Preface to the First Edition xix
1 Introduction 1
2 Model Testing 9
2.1 Falling Body in a Vacuum 10
2.2 Pendulum 11
2.3 Water Waves 12
2.4 Drag Force on a Sphere 14
2.5 Viscous Drag on a Flat Plate 17
2.6 Viscous Drag on General Bodies 18
2.7 Hydrofoil Lift and Drag 22
2.8 Screw Propeller 25
2.9 Drag on a Ship Hull 29
2.10 Propeller-Hull Interactions 34
2.11 Unsteady Force on an Accelerating Body 37
2.12 Vortex Shedding 40
2.13 Wave Force on a Stationary Body 41
2.14 Body Motions in Waves 45
2.15 Ship Motions in Waves 48
Problems 50
References 53
3 The Motion of a Viscous Fluid 55
3.1 Description of the Flow 56
3.2 Conservation of Mass and Momentum 58
viii Contents
3.3 The Transport Theorem 59
3.4 The Continuity Equation 61
3.5 Euler's Equations 62
3.6 Stress Relations in a Newtonian Fluid 62
3.7 The Navier-Stokes Equations 65
3.8 Boundary Conditions 66
3.9 Body Forces and Gravity 66
3.10 The Flow between Two Parallel Walls (Plane Couette Flow) 67
3.11 The Flow through a Pipe (Poiseuille Flow) 68
3.12 External Flow Past One Flat Plate 70
3.13 Unsteady Motion of a Flat Plate 72
3.14 Laminar Boundary Layers: Steady Flow Past a Flat Plate 75
3.15 Laminar Boundary Layers: Steady Two-Dimensional Flow 81
3.16 Laminar Boundary Layers: Closing Remarks 88
3.17 Turbulent Flow: General Aspects 88
3.18 Turbulent Boundary Layer on a Flat Plate 91
3.19 The 1/7-Power Approximation 99
3.20 Roughness Effects on Turbulent Boundary Layers 100
3.21 Turbulent Boundary Layers: Closing Remarks 102
Problems 102
References 104
4 The Motion of an Ideal Fluid 107
4.1 Irrotational Flows 108
4.2 The Velocity Potential 110
4.3 Bernoulli's Equations 112
4.4 Boundary Conditions 114
4.5 Simple Potential Flows 116
4.6 The Stream Function 121
4.7 The Complex Potential 123
4.8 Conformal Mapping 125
4.9 Separation of Variables 129
4.10 Fixed Bodies and Moving Bodies 132
4.11 Green's Theorem and Distributions of Singularities 133
4.12 Hydrodynamic Pressure Forces 138
4.13 Force on a Moving Body in an Unbounded Fluid 141
4.14 General Properties of the Added-Mass Coefficients 147
Contents ix
4.15 The Added Mass of Simple Forms 151
4.16 The Body-Mass Force 155
4.17 Force on a Body in a Nonuniform Stream 156
4.18 The Method of Images 160
Problems 161
References 164
5 Lifting Surfaces 167
5.1 Two-Dimensional Hydrofoil Theory 169
5.2 Linearized Two-Dimensional Theory 172
5.3 The Lifting Problem 176
5.4 Simple Foil Shapes 180
5.5 Drag Force on a Two-Dimensional Foil 184
5.6 Two-Dimensional Source and Vortex Distributions 186
5.7 Singular Integral Equations 189
5.8 Three-Dimensional Vortices 197
5.9 Three-Dimensional Planar Lifting Surfaces 200
5.10 Induced Drag 206
5.11 Lifting-Line Theory 210
5.12 Cavity Flows 216
5.13 Symmetric Cavity Flows 218
5.14 Supercavitating Lifting Foils 223
5.15 Unsteady Hydrofoil Theory 229
5.16 Oscillatory Time Dependence 236
5.17 The Sinusoidal Gust Problem 239
5.18 Transient Problems 241
Problems 242
References 244
6 Waves and Wave Effects 247
6.1 Linearized Free-Surface Condition 248
6.2 Plane Progressive Waves 250
6.3 Finite-Depth Effects 253
6.4 Nonlinear Effects 256
6.5 Mass Transport 261
6.6 Superposition of Plane Waves 263
6.7 Group Velocity 268
6.8 Wave Energy 271
x Contents
6.9 Two-Dimensional Ship Waves 277
6.10 Three-Dimensional Ship Waves 282
6.11 The Method of Stationary Phase 286
6.12 Energy Radiation and Wave Resistance 290
6.13 Thin-Ship Theory of Wave Resistance 292
6.14 Wave Pattern Analysis 294
6.15 Body Response in Regular Waves 297
6.16 Hydrostatics 302
6.17 Damping and Added Mass 306
6.18 Wave-Exciting Force and Moment 313
6.19 Motion of Floating Bodies in Regular Waves 319
6.20 Ocean Waves 323
6.21 Motions of Bodies in Irregular Waves 333
Problems 334
References 338
7 Hydrodynamics of Slender Bodies 341
7.1 Slender Body in an Unbounded Fluid 342
7.2 Longitudinal Motion 348
7.3 The Lateral Force 351
7.4 Ship Maneuvering: The Hydrodynamic Forces 357
7.5 Ship Maneuvering: The Equations of Motion 363
7.6 Slender Bodies in Waves 369
7.7 Strip Theory for Ship Motions 374
7.8 Slender Bodies in Shallow Water 388
Problems 397
References 399
Appendix: Units of Measurement and Physical Constants 403
Notes 405
Index 409

Screenshots

Rating: 5 / 5 (Votes: 24)
Reply
alexn23 02-Dec-2018 18:35
Респект выложившему ./ Great thanks for uploading
Очень удивляет подраздел "Судостроение и судоремонт".
Вы серьезно? На морском сайте нет подраздела "гидродинамика"?
Что, в команде сайта нет нормального корабела?
0
Reply
Poluhohol 28-Feb-2019 19:46
alexn23, ...тут в основном "эксплуататоры"-эксплуатанты судов, а не кораблестроители...
0
Reply
Similar releases
Added Masses of Ship Structures - Alexandr I. Korotkin [2008, PDF]
Basic Ship Theory Volume 2 Ship Dynamics and Design - E. C. Tupper, K. J. Rawson [2001, PDF]
Design of Ship Hull Structures (A Practical Guide for Engineers) - Masaki Mano [2008, PDF]
Handbook of Marine Craft Hydrodynamics and Motion Control - Thor I. Fossen [2011, PDF]
High Performance Marine Vessels - Liang Yun, Alan Bliault [2012, PDF]
International Conference on Computational Methods in Marine Engineering - Luís Eça, Eugenio Oñate &…
Marine Control Systems - Asgeir J. Sørensen [2013, PDF]
Marine Hydrodynamics Lectures - MIT - MIT [2005, PDF]
Marine Propellers and Propulsion - J. S. Carlton [2019, PDF]
Marine Renewable Energy Handbook - Multon B. [2012, PDF]
  • Reply

The time now is: Today 18:13

All times are GMT + 3 Hours